本文旨在帮助构建与大规模语言模型(LMS)相关的风险景观。为了促进负责任的创新的进步,需要深入了解这些模型提出的潜在风险。详细分析了广泛的建立和预期的风险,借鉴了计算机科学,语言学和社会科学的多学科专业知识和文学。我们概述了六个具体风险领域:I.歧视,排除和毒性,II。信息危害,III。误导危害,V.恶意用途,V.人机互动危害,vi。自动化,访问和环境危害。第一个领域涉及陈规定型,不公平歧视,排他性规范,有毒语言和LMS社会群体的绩效。第二个重点侧重于私有数据泄漏或LMS正确推断敏感信息的风险。第三次解决贫困,虚假或误导性信息的风险,包括在敏感域中,以及敲门式风险,如共享信息的信任侵蚀。第四次考虑了试图使用LMS造成伤害的行动者的风险。第五部分侧重于用于支持与人类用户互动的会话代理的LLMS特异性的风险,包括不安全使用,操纵或欺骗。第六六探讨了对不同社会群体或社区可能产生不同影响的环境危害,工作自动化和其他挑战的风险。总的来说,我们审查了21个风险。我们讨论了不同风险的起源点和指向潜在的缓解方法。最后,我们讨论在实施减轻的组织职责,以及协作和参与的作用。我们强调了进一步研究的方向,特别是在扩展工具包时,用于评估和评估LMS中的概述风险。
translated by 谷歌翻译
机器学习目前对世界产生了巨大的影响,越来越多地影响机构实践并影响了社区。因此,至关重要的是,我们质疑该领域的模糊概念是价值中性或普遍有益的,并研究该领域正在发展的特定价值。在本文中,我们首先介绍了一种研究文档中编码的值的方法和注释方案,例如研究论文。采用该方案,我们分析了100个高度引用的机器学习论文,该论文在Premier机器学习会议,ICML和Neurips上发表。我们注释论文的关键特征,这些特征揭示了其价值观:他们选择项目的理由,这些项目的归因于他们提升的项目,对潜在的负面后果的考虑以及机构的隶属关系和资金来源。我们发现,很少有论文证明其项目如何与社会需求联系起来(15 \%),而讨论负潜力(1 \%)的讨论更少。通过逐行的内容分析,我们确定了59个在ML研究中得到提升的值,其中,我们发现论文最常根据绩效,概括,定量证据,效率,基于过去的绩效,定量证据,效率来证明和评估自己的合理性和评估工作和新颖。我们提供了广泛的文本证据,并在这些价值观的定义和操作中确定了关键主题。值得注意的是,我们发现系统的文本证据表明,这些最高价值是通过假设和含义来定义和应用的,通常支持权力的集中化。在本文中,我们发现这些高度引用的论文与科技公司和精英大学之间的关系越来越紧密。
translated by 谷歌翻译